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Telomeric DNA can fold into four-stranded structures

known as G-quadruplexes. Here we investigate the ability

of G-quadruplex DNA to serve as a substrate for recombi-

nant Tetrahymena and native Euplotes telomerase. Inter-

and intramolecular G-quadruplexes were gel-purified and

their stability examined using native gel electrophoresis,

circular dichroism (CD) and thermal denaturation. While

intermolecular G-quadruplexes were highly stable, they

were excellent substrates for both ciliate telomerases

in primer extension assays. In contrast, intramolecular

G-quadruplexes formed in Kþ exhibited biphasic unfold-

ing and were not extended by ciliate telomerases. Naþ -

stabilised intramolecular G-quadruplexes were extended

by telomerase owing to their rapid rate of dissociation. The

Tetrahymena telomerase protein component bound to

inter- but not intramolecular Kþ-stabilised G-quadru-

plexes. This study provides evidence that parallel inter-

molecular G-quadruplexes can serve as substrates for

telomerase in vitro, their extension being mediated

through direct interactions between this higher-order

structure and telomerase.
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Introduction

Telomeres are protein–DNA structures at the ends of eukar-

yotic chromosomes that protect chromosome ends from

fusion and are vital in safeguarding genomic stability. The

30 strand of telomeres is composed of tandem repeats of short

G-rich sequences that protrude as a single-stranded DNA

overhang. These repeats are T2AG3 in humans and T2G4

and T4G4, respectively, in the ciliates Tetrahymena and

Euplotes (Blackburn and Gall, 1978; Klobutcher et al, 1981).

Single strands of telomeric DNA can adopt higher order

structures, known as G-quartets, under physiological condi-

tions in vitro (Henderson et al, 1987; Sundquist and Klug,

1989). These structures are defined by the coordination

of four guanine residues in a cyclic array, stabilised by

Hoogsteen hydrogen-bonding and a centrally located cation

(Figure 1A) (Williamson et al, 1989). Multiple layers of

G-quartets stack to form G-quadruplexes, in which one

or more strands are assembled together in either an intra-

or intermolecular configuration (Figure 1). G-quadruplexes

exhibit extensive structural polymorphism (reviewed in

Simonsson, 2001). The DNA strand orientation may be either

parallel (Figure 1C and D), antiparallel (Figure 1B) or in some

cases both configurations (Figure 1E).

Evidence supporting the physiological relevance of

G-quadruplex structures in vivo is rapidly mounting.

Notably, several proteins have been isolated that drive inter-

molecular G-quadruplex assembly. For example, the b sub-

unit of Oxytricha telomere binding protein has been

demonstrated to accelerate formation of dimer and tetramer

quartets (Fang and Cech, 1993). Similarly, RAP1, a major

dsDNA telomeric binding protein from Saccharomyces cerevi-

siae, not only binds to but also promotes the formation of a

parallel G-quadruplex in the presence of potassium (Giraldo

and Rhodes, 1994; Giraldo et al, 1994). Furthermore, numer-

ous factors that resolve G-quadruplex structure (Baran et al,

1997; Harrington et al, 1997; Sun et al, 1998, 1999;

Enokizono et al, 2005) and some that specifically cleave

G-quadruplex proximal DNA (Liu et al, 1993; Sun et al,

2001) have been identified. The most direct evidence for

the existence of these secondary structures in vivo comes

from the generation of antibodies against antiparallel

G-quadruplex DNA that react with the ciliated protozoan

Stylonychia lemnae macronuclei (Schaffitzel et al, 2001).

The telomere binding proteins TEBPa and TEBPb are both

required for the formation of these G-quadruplexes at

Stylonychia telomeres in vivo (Paeschke et al, 2005).

Telomerase is a ribonucleoprotein enzyme, which adds

telomeric repeats to the chromosome end by reverse tran-

scription of an integral RNA template (Greider and

Blackburn, 1985). The observation that 485% of all cancers

exhibit telomerase activity has attracted significant attention

to this enzyme (Shay and Bacchetti, 1997). Initially, Zahler

et al (1991) demonstrated that telomerase from the ciliate

Oxytricha nova does not require primer folding into a

G-quadruplex for elongation, and proposed that stabilisation

of a primer’s secondary structure may in fact inhibit telomere

elongation in vivo. However, this seminal research used crude

extracts containing telomerase in which G-quadruplex-inter-

acting proteins may have been present, as well as crude

mixtures of G-quadruplex DNA.

Using purified telomerase isolated from Euplotes aedicula-

tus and purified recombinant Tetrahymena thermophila telo-

merase, we have re-evaluated the ability of telomerase to

extend G-quadruplex DNA. We utilised telomeric oligo-

nucleotides capable of forming both intramolecular and inter-

molecular conformations, stabilised by either Kþ or Naþ
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ions. Owing to the heterogeneous nature of G-quadruplex

conformations, we were careful to isolate particular confor-

mations by gel purification and verify their identity. In

the case of intramolecular antiparallel G-quadruplexes, our

results validated the initial observation that increasing stabi-

lisation of telomeric secondary structure inhibits telomerase-

catalysed primer extension (Zahler et al, 1991). However,

intermolecular parallel G-quadruplexes can be extended by

both Euplotes and Tetrahymena telomerase, to a greater

extent than would be predicted by their slow dissociation.

Results

Folding and characterisation of G-quadruplex DNA

To examine the ability of telomerase to extend G-quadruplex

DNA, we prepared and isolated G-rich oligonucleotides

folded in either Kþ or Naþ . Tetrahymena telomeric oligo-

nucleotides (Table I) migrated according to their size on a

native gel with no salt, indicating a lack of secondary

structure (Figure 2A). In general, folding G-rich DNA gives

rise to a heterogeneous population of structures. Indeed, in

our hands, most telomeric oligonucleotides folded into

heterogeneous mixtures when analysed by nondenaturing

PAGE (Figures 2 and 3). In the presence of both Naþ and

Kþ salts, a large proportion of the 21 and 24-nucleotides (nt)

Tetrahymena oligonucleotides migrated faster than expected,

indicating that they have a compact structure, which is likely

to be an intramolecular G-quadruplex, as has been observed

previously (Figure 2B and C; Williamson et al, 1989).

In the presence of Kþ , the 24TTand 21GG oligonucleotides

also demonstrated slower mobility species, indicative of

intermolecular G-quadruplexes consisting of two or more

DNA strands (Figure 2C). The proportion of this band in-

creased with increasing DNA concentrations, as would be

expected for an intermolecular complex (data not shown).

24GG did not show a prominent intermolecular G-quadruplex

band in Kþ (Figure 2C), even though it has been reported

that this oligonucleotide can form an intermolecular G-quad-

ruplex in the presence of Kþ (Hardin et al, 1991); the reason

for this difference under our reaction conditions is unknown.

The Tetrahymena telomeric oligonucleotide 12GT also

demonstrated a mixture of bands in the presence of Naþ ,

including a band of slower mobility than the T15 marker

(Figure 3B). Crosslinking analysis of this band after gel

purification indicates that it is a four-stranded intermolecular

structure (Figure 1D, Supplementary Figure 1).

Since the pattern of G-quadruplexes formed by these

oligonucleotides is heterogeneous, it was important to isolate

individual conformations for further study. After gel purifica-

tion, both inter- and intramolecular G-quadruplex conforma-

tions of 24TT in Kþ were well preserved (Figure 3A, lanes 4

and 5; B95% purity), as was the intermolecular form of

12GT in Naþ (Figure 3B, lane 4, B99% purity). Structures

formed from 21GG were less well-preserved after purification,

Figure 1 (A) Structure of a G-quartet. Hydrogen bonds between guanines and interaction with a monovalent cation, located centrally, are
shown. (B) Solution structure of antiparallel Oxy 3.5 G-quadruplex in sodium (Wang and Patel, 1995) and potassium (Smith et al, 1995). (C, D)
Predicted structure of parallel intermolecular Oxy 1.5 G-quadruplex in potassium (C) and 12GT in sodium (D) (this work). (E) Solution
structure of antiparallel intramolecular 24GG G-quadruplex in sodium (Wang and Patel, 1994).
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yielding 60–85% purity (data not shown). The contaminating

bands consisted of other G-quadruplexes, not linear DNA. All

subsequent analyses were carried out using these gel-purified

structures.

We confirmed that the observed bands represent G-quad-

ruplexes using circular dichroism (CD). Parallel G-quadru-

plexes exhibit a positive CD peak at B265 nm and a negative

CD peak at B240 nm, while antiparallel G-quadruplexes

exhibit a positive CD peak at B295 nm and a negative CD

peak at B260 nm (Williamson, 1994; Keniry, 2000). The gel-

purified intermolecular conformations displayed strong

positive and negative peaks at 260/240 nm, respectively,

and negligible signals at 295 nm, supporting their assignment

as parallel G-quadruplexes (Figure 3C). On the other hand,

the isolated intramolecular 24TT G-quadruplex had a strong

positive peak at 295 nm and no signal at 260 nm, indicative of

an antiparallel conformation (Figure 3C). An intramolecular

antiparallel structure has previously been observed by NMR

and platination studies for 24GG in Naþ (Wang and Patel,

1994; Redon et al, 2001); the structures of the other

Tetrahymena telomeric oligonucleotides used in this study

have not been solved.

As substrates for Euplotes telomerase, we chose to

study Oxy 1.5 and Oxy 3.5 (Table I), which form well-charac-

terised G-quadruplexes. Oxy 3.5 folded in both Kþ and

Naþ demonstrated a major compact species that migrated

below the T20 marker, supporting intramolecular G-quadru-

plex formation (Figure 3D). Oxy 1.5 folded in Kþ showed

a shift toward a slower moving species (B48 nt), supporting

a multimeric, possibly four-stranded, intermolecular quadru-

plex (Figure 3D).

G-quadruplex formation of these oligonucleotides was also

verified by CD (Figure 3E). Oxy 3.5 folded in Kþ or Naþ

exhibited positive and negative CD peaks at 291/262 nm and

296/264 nm, respectively. These results verify the formation

of antiparallel, intramolecular G-quadruplexes as previously

characterised (Smith et al, 1995; Wang and Patel, 1995;

Petraccone et al, 2004). Oxy 1.5 folded in Kþ showed positive

and negative CD peaks at 262 and 238 nm, suggesting the

formation of a parallel G-quadruplex. The major compact or

multimeric species from each oligomer was isolated by gel

purification and used for further characterisations.

Stability of Tetrahymena G-quadruplexes

The stability of gel-purified G-quadruplexes was measured

by examining the melting temperature (Tm) of the folded

structures and by employing a complementary strand ‘trap’

assay (Raghuraman and Cech, 1990). In the ‘trap’ assay, an

excess of a C-rich complementary strand is added to the

G-quadruplex and samples are analysed over time by non-

denaturing electrophoresis. Provided that the concentration

of the C-strand is high enough to trap any unfolded G-strand

molecules, the rate of Watson-Crick (WC) duplex formation

is indicative of the rate of G-quadruplex unfolding. The rates

we observed (below) were independent of the concentration

of C-strand oligonucleotide, providing evidence that this

strand is not actively invading the quadruplex (data not

shown).

Upon addition of a 10-fold excess of C-rich (48CC) strand,

B98 and 100% of 24TT and 21GG Naþ -stabilised intramole-

cular G-quadruplexes, respectively, hybridised to the com-

plementary strand within 1.5 min (Supplementary Figure 2A

and D). This suggests that G-quadruplexes formed from both

sequences in Naþ are highly unstable and unfold rapidly.

Both G-quadruplexes exhibited a monophasic mode of

unfolding with a half-life (t1/2) of o1.5 min.

Table I Oligonucleotides used in this study

Nomenclature Sequence Length

Tetrahymena oligonucleotides
6TT 50-GGGGTT-30 6
6GG 50-TTGGGG-30 6
12GT 50-TGGGGTTGGGGT-30 12
24TT 50-GGGGTTGGGGTTGGGGTTGGGGTT-30 24
24GG 50-TTGGGGTTGGGGTTGGGGTTGGGG-30 24
21GG 50-GGGGTTGGGGTTGGGGTTGGG-30 21
48CC 50-(AACCCC)8-3

0 48
48AA 50-(CCCCAA)8-3

0 48
30AA 50-(CCCCAA)5-3

0 (RNA) 30
Biot-24TT 50-Biotin-GGGGTTGGGGTTGGGGTTGGGGTT-30 24
Biot-21GG 50-Biotin-GGGGTTGGGGTTGGGGTTGGG-30 21

Euplotes oligonucleotides
Oxy 1.5 50-GGGGTTTTGGGG-30 12
Oxy 3.5 50-GGGGTTTTGGGGTTTTGGGGTTTTGGGG-30 28
Ea23 50-TTTTGGGGTTTTGGGGTTTTGGG-30 23
EaTR 50-CAAAACCCCAAAACC-30 (RNA) 15

Non-telomeric oligonucleotides
Biot-PBR 50-Biotin-AGCCACTATCGACTACGCGATCAT-30 24
T10 50-TTTTTTTTTT-30 10
T15 50-TTTTTTTTTTTTTTT-30 15
T20 50-TTTTTTTTTTTTTTTTTTTT-30 20

Figure 2 Native gel electrophoresis of the indicated oligonucleotides (1mM) of Tetrahymena telomeric sequence in the absence of salt (A), in
50 mM NaGlu (B) or KGlu (C). T15 is an unstructured molecular weight (MW) marker.
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The intramolecular 21GG G-quadruplex stabilised in Kþ

displayed biphasic unfolding kinetics. Approximately 40% of

this G-quadruplex hybridised to the complementary strand

within 1 min of the reaction; over the following 60 min a

further 30% of this G-quadruplex slowly unfolded (Figure 4A

and D). The unfolding profile of this G-quadruplex fitted to a

double exponential equation, yielding an unfolding rate of

0.9570.13 h�1 and a t1/2 of 0.770.1 h for the slower unfold-

ing population. The population that was immediately acces-

sible to the C-rich strand had a t1/2 of o1 min.

The intramolecular 24TT Kþ-stabilised G-quadruplex also

demonstrated biphasic unfolding with an initial burst

(B32%) of hybridisation 1.5 min after addition of the

C-rich strand followed by slower unfolding (Supplementary

Figure 2B and E). Fitting this data to a double exponential

equation yielded an unfolding rate of 0.1570.02 h�1 for the

slower unfolding population, which corresponds to a t1/2

of 4.870.8 h. The rapidly hybridisable population had a t1/2

of o1 min. Thus, for both oligonucleotides, there are two

distinct species: one that is readily hybridisable by the

complementary strand and one that is not.

Intermolecular G-quadruplexes formed from 21GG, 24TT

or 12GTsequences followed a monophasic dissociation trend.

Within the 62 min of the hybridisation reaction o6% of the

total intermolecular 21GG G-quadruplex contributed to WC

duplex formation (Figure 4B and E). The majority of the

duplex formation can be attributed to the contaminating

intramolecular counterpart of this G-quadruplex. Similarly,

o7% of the gel-purified intermolecular 24TT G-quadruplex

unfolded within 63 min of incubation with its complementary

strand (Supplementary Figure 2C and F). Notably, in unfold-

ing assays using the intermolecular 12GT quadruplex, which

is much more pure than the other two, no WC duplex

formation is detectable even after 60 min (Figure 4C and F).

For all three intermolecular G-quadruplexes, the unfolding

rate was too slow to fit to a single exponential equation.

Observations from ‘trap’ assays described above were

confirmed by measuring melting temperatures of the inter-

molecular 21GG and 24TT G-quadruplexes. Both G-quadru-

plexes displayed high Tm values that increased with

increasing G-quadruplex concentration, indicative of inter-

molecular complexes (Table II). Overall, it is apparent that

the parallel intermolecular G-quadruplexes are highly stable.

Stability of Euplotes G-quadruplexes

Similar measurements of Tm and complementary strand trap

assays were carried out to determine the stability of the

Euplotes intramolecular G-quadruplexes. In these trap assays,

Figure 3 Characterisation of gel-purified G-quadruplexes. (A) Native gel electrophoresis of G-quadruplexes formed by Tetrahymena
oligonucleotide 24TT in the presence of 50 mM KGlu. Lane 1: T15 unstructured MW marker. Lanes 2 and 3: 24TT oligonucleotide folded
in the presence of 50 mM KGlu at 4 and 100mM concentrations, respectively, prior to gel purification. The intra- and intermolecular bands
were isolated from 4 and 100mM 24TT G-quadruplex mixtures, respectively, and their post-purification profiles are shown in lanes 4 and 5.
(B) Native gel electrophoresis of 12GT intermolecular G-quadruplex in 100 mM NaCl pre- (lane 2) and post-gel purification (lane 4). Lanes 1
and 3: T15 MW marker. (C) CD spectra of gel-purified intermolecular 24TT, 21GG, and intramolecular 24TT G-quadruplexes in 50 mM KGlu and
intermolecular 12GT G-quadruplex in 100 mM NaCl. The DNA concentrations were 17mM for intermolecular 24TT and 12GT, 10mM for
intermolecular 21GG and 2.6mM for intramolecular 24TT. (D) Native gel electrophoresis of gel-purified G-quadruplexes formed by Euplotes
oligonucleotides Oxy 3.5 (50 mM, in the presence of 50 mM Kþ or NaGlu) and Oxy 1.5 (200mM, in the presence of 50 mM KGlu). MW markers
(M) are 50-end labelled Poly-T (T10, T20) or non-telomeric DNA (19-mer and 30-mer) stained with Sybr Green. (E) CD spectra of gel-purified
5mM Oxy 3.5 intramolecular G-quadruplexes (50 mM Kþ or NaGlu) and 5mM Oxy 1.5 intermolecular G-quadruplex (50 mM KGlu).
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however, an RNA oligonucleotide consisting of the 15-nt

Euplotes telomerase RNA template sequence (EaTR) was

used as the trap, in order to mimic a telomerase assay.

The Kþ-stabilised Oxy 3.5 intramolecular G-quadruplex

was incubated in the presence of increasing EaTR template in

Kþ reaction buffer (Figure 5A). Lone G-quadruplex exhibited

a single band while pre-annealed Oxy 3.5-EaTR showed

multiple band shifts, indicating that several higher-order

species had formed. The presence of multiple species is likely

due to several different binding modes of the RNA template to

the DNA primer in 1:1 and 2:1 stoichiometries. These higher-

order interactions were not characterised individually, but

were treated as contributors to the total shifted species.

To determine if the amount of shifted species changed over

time, time course incubations of 1 and 100 molar equivalents

of EaTR template at 1 and 30 min time points were conducted

(Figure 5A). At 1 min with 100 equivalents of EaTR template,

78% of the Kþ-stabilised Oxy 3.5 G-quadruplex was con-

served, while at 30 min with 100 equivalents of template,

76% of the quadruplex was conserved. This limited gain in

shifted species over 29 min indicates that a small population

(B22%) of G-quadruplex was available to rapidly bind to the

template, followed by a slower unwinding of the remain-

ing hybridisable population. Thus, like the Kþ-stabilised

Tetrahymena intramolecular G-quadruplex, this structure

exhibits biphasic unfolding kinetics.

The Naþ -stabilised Oxy 3.5 G-quadruplex time course

revealed that with 100 equivalents of EaTR template at 1

and 30 min of hybridisation, 45 and 35% of the quadruplex

was conserved, respectively (Figure 5B). Thus, like the

Tetrahymena intramolecular G-quadruplexes, the Naþ -stabi-

lised Oxy 3.5 G-quadruplex is less stable than the Kþ form.

Figure 4 Complementary strand trap method for determining the rate of unfolding of gel-purified Tetrahymena G-quadruplexes. The indicated
G-quadruplexes were incubated with 10- to 20-fold excess of complementary single-stranded DNA (48AA) or RNA (30AA) and at the indicated
time intervals aliquots were loaded onto a native 12% polyacrylamide gel containing 50 mM KGlu (A, B) or 100 mM NaCl (C). T15: MW marker;
WC: preannealed Watson–Crick duplex. Note that later time points have less time to migrate into the gel. Plots D–F show the quantitation of the
corresponding gels; error bars represent standard deviation from an average of at least two experiments. (A) Unfolding of 32P-labelled
intramolecular Kþ -stabilised 21GG G-quadruplex at 0.54mM (85% purity). (B) Unfolding of 32P-labelled intermolecular Kþ -stabilised 21GG
G-quadruplex at 3 mM (63% purity). (C) Unfolding of 32P-labelled intermolecular Naþ -stabilised 12GT G-quadruplex at 11 mM (99% purity).

Table II Tm values for Tetrahymena and Euplotes gel-purified G-quadruplexesa

G-quadruplex Cation Strand orientation Strand stoichiometry Tm (1C)b Tm (1C)c

Oxy 3.5 Na+ Antiparallel Intramolecular 60 —
Oxy 3.5 K+ Antiparallel Intramolecular 85 —
Oxy 1.5 K+ Parallel Intermolecular 88 —
21GG K+ Parallel Intermolecular 82 88
24TT K+ Parallel Intermolecular 77 90

aUV melting curves were monitored at 295 nm in the appropriate folding buffer. Heating and cooling curves were superimposable with only
slight hysteresis.
b10mM strand concentration.
c20mM strand concentration.
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‘Trap’ assays with the Oxy 1.5 intermolecular G-quadruplex

were unsuccessful due the radioactive end label interfering

with intermolecular G-quadruplex assembly (Uddin et al,

2004); however, the stability of this Euplotes G-quadruplex

proved to be very high as determined from Tm measurements

(Table II).

Extension of folded G-quadruplexes by Tetrahymena

telomerase

Telomerase activity assays were performed to determine if the

G-quadruplexes characterised in the previous sections act

as substrates for their respective telomerase enzymes. Naþ -

stabilised intramolecular G-quadruplexes formed from either

21GG or 24TT were readily extendable by recombinant

Tetrahymena telomerase (Figure 6A, Supplementary Figure

3A). This was also the case for 24GG (data not shown).

Extension of these G-quadruplexes is likely due to the

fact that they are in rapid equilibrium with their linear

forms. These G-quadruplexes exhibited higher Km values

and equivalent or lower relative Vmax values than their linear

counterparts (Table III). This indicates a lower relative speci-

ficity (kcat/Km) of the enzyme for these G-quadruplex

substrates. This supports the idea that if a Naþ -stabilised

intramolecular G-quadruplex is in constant equilibrium with

its unfolded state, then less linear DNA is available for

binding and extension by telomerase.

Kþ-stabilised gel-purified intramolecular G-quadruplexes

were not extended by telomerase (Figure 6B, Supplementary

Figure 3B). Some very faint extension products were discern-

able, which could be attributed to the presence of conta-

minating intermolecular G-quadruplex. This result was

unexpected given the immediate hybridisation of 32–40%

of this G-quadruplex to its complementary strand followed

by a much slower dissociation of the remainder of the

population (see Figure 4A and D, Supplementary Figure 2B

and E). It is improbable that the absence of accessory

protein(s) in the in vitro reconstituted preparation of

Tetrahymena telomerase resulted in an inability of telomerase

to extend Kþ-stabilised intramolecular G-quadruplexes, since

partially purified native Tetrahymena telomerase also failed

to utilise the Kþ-stabilised intramolecular 24GG G-quadru-

plex as a primer (data not shown).

Intermolecular G-quadruplexes, unlike their intramolecu-

lar counterparts, were excellent substrates for Tetrahymena

telomerase (Figure 6C, D and E, Supplementary Figure 3B

and C). Their extension is not likely due to spontaneous

dissociation of the G-quadruplex into its linear state, since it

is evident from the unfolding analyses that only a very small

proportion (at most B6%) of the G-quadruplex unfolds

within the first 10 min of the reaction (Figure 4E and F,

Supplementary Figure 2F). If the extension of 21GG inter-

molecular G-quadruplex that is seen in Figure 6D is due to

this unfolding then it should be equivalent to the level of

extension of linear DNA of the same sequence at 6% of a

given concentration of G-quadruplex. However, the extension

of linear DNA at 0.09 mM, for example, is 3.8-fold lower than

the extension of G-quadruplex at 1.5 mM. The same holds true

for the 24TT intermolecular G-quadruplex (Supplementary

Figure 3C). This argument is even stronger for the 12GT

intermolecular G-quadruplex, since it is extended by telomer-

ase (Figure 6E) in the absence of any detectable unfolding

(Figure 4C).

To further characterise intermolecular G-quadruplexes as

candidate substrates for telomerase, we measured the affinity

(Km) and rate constants (kcat) of gel-purified intermolecular

24TT stabilised in Kþ and its linear control. Telomerase has

Figure 5 Euplotes complementary strand ‘trap’ assays used to determine G-quadruplex stability in the presence of telomerase RNA template
(EaTR). 50 end-labelled 10 mM Oxy 3.5 intramolecular G-quadruplexes in 50 mM KGlu (A) or NaGlu (B) were incubated with 1 or 100
equivalents of unlabelled EaTR template for 1 or 30 min at 251C and electrophoresed on 20% nondenaturing polyacrylamide gels (in 50 mM Kþ

(A) or NaGlu (B)). Lane 1: 50 end-labelled unstructured poly-T markers (M). Lane 2: lone G-quadruplex. Lane 3: preannealed Oxy 3.5-EaTR
polymorphic species.
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a reduced affinity for the intermolecular G-quadruplex, with

a Km of 316071100 nM, as compared to that of the linear

control at 4507230 nM. The kcat values for the G-quadruplex

and its linear counterpart measure 0.470.1 and 0.187
0.01 min�1, respectively. Despite a higher kcat for the G-qua-

druplex, its kcat/Km remains lower than that of the linear

primer (2.170.9�103 versus 6.772.5�103 s�1 M�1). Thus,

while the G-quadruplex is a good substrate, its linear counter-

part is favoured by telomerase.

Extension of folded G-quadruplexes by Euplotes

telomerase

G-quadruplexes folded from Oxy 3.5 and Oxy 1.5 were tested

for their ability to act as primers for native Euplotes telomer-

ase. All telomerase assays included heat denatured control

primer Ea23 and corresponding Oxy 1.5 or 3.5 sequences

(Figure 7). The Kþ-stabilised Oxy 3.5 intramolecular

G-quadruplex was a poor telomerase primer. The presence

of a stable secondary structure in this primer directly corre-

lates with an increase in Km and decrease in relative kcat/Km

(Table IV). By contrast, Naþ -stabilised Oxy 3.5 intramolecu-

lar G-quadruplex allowed greater overall activity. The lower

Km value supports the trend that Naþ stabilises G-quadru-

plexes less effectively than Kþ , resulting in a more accessible

primer.

The Kþ-stabilised Oxy 1.5 intermolecular G-quadruplex

exhibited reduced affinity and specificity compared to the

control primer Ea23. Interestingly, despite a higher Km and

lower kcat/Km, the overall activity was as high as denatured

Oxy 1.5, suggesting that this G-quadruplex is extended by

telomerase to a greater extent than would be expected from

its stability.

As further evidence that the extension of the Tetrahymena

and Euplotes G-quadruplexes was not due to equilibrium of

these structures with their linear counterparts, we subjected

the G-quadruplex DNA to treatment with enzymes known to

act on single-stranded DNA. Snake venom phosphodiesterase

1 (SVP1), which cleaves single-stranded DNA exonucleolyti-

cally from the 30 end, digested a majority of linear control

DNA (Supplementary Figure 4). However, close to 100% of

intermolecular quadruplexes 24TT, 12GT and Oxy 1.5 were

resistant to treatment with SVP1. In fact, the intramolecular

quadruplexes were digested to a greater extent than the

intermolecular ones, consistent with their faster rates of

unfolding and in contrast to their lower extension by telo-

merase. Approximately 13% of intermolecular 21GG was

digested, but this quadruplex contains B35% contamination

with intramolecular 21GG. As expected, the terminal two

30 residues were digested from 24TT, but none of the other

G-quadruplexes showed digestion of terminal nucleotides,

indicating that these structures do not contain single-stranded

overhangs.

Terminal deoxytransferase (TdT) adds nucleotides to 30

overhangs or double-stranded DNA. While TdT efficiently

Figure 6 Telomerase activity assays using in vitro reconstituted recombinant Tetrahymena telomerase and G-quadruplexes formed from
Tetrahymena oligonucleotides. For all panels, LC¼ loading control (32P-labelled 100-mer), * represents the unextended 50 32P-labelled gel-
purified G-quadruplex, GP and UP refer to gel-purified and unpurified G-quadruplexes, respectively. All assays were conducted at 251C for
60 min (A–C), 10 min (D) or 15 min (E) using B2 nM enzyme. (A) Telomerase extension of 32P-labelled intramolecular 21GG (‘GP Intra’; 1.8mM,
85% purity) and unlabelled 21GG (1.8mM) in 50 mM NaGlu. (B) Telomerase extension of 32P-labelled intramolecular 21GG (1.1 mM, 78% purity)
and unlabelled 21GG (1.1mM) in 150 mM KGlu. (C) Telomerase extension of 32P-labelled intermolecular 21GG (0.7mM, 66% purity) and
unlabelled 21GG (0.7mM) in 150 mM KGlu. (D) Telomerase extension of 32P-labelled intermolecular 21GG (0.09–1.5mM, 63% purity) in 50 mM
KGlu. The control is unlabelled linear 21GG over the same concentration range, in the absence of KGlu. (E) Telomerase extension of
intermolecular 12GT (0.06–8 mM, 99% purity) in 100 mM NaCl. Linear 12GT (�NaCl) and denatured 12GT (þNaCl) G-quadruplex over the
same concentration range were used as controls.

Table III Km values and relative Vmax ratios (G-quadruplex/linear
DNA) for gel-purified intramolecular Tetrahymena G-quadruplexes
stabilised in 50 mM NaGlu and their linear counterparts

Primer Conformation Km7s.d. (nM) Relative Vmax

(folded/linear)

24TT Intramolecular 12407750 0.3470.09
24TT Linear 560760
24GG Intramolecular 8807420 1.1970.4
24GG Linear 160750
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extended linear controls, intermolecular Oxy 1.5 and 12GT

G-quadruplexes showed minimal extension by this enzyme

(Supplementary Figure 5).

Together these data demonstrate that the intermolecular

G-quadruplexes are not efficient substrates for two nucleic

acid processing enzymes, SVP1 and TdT. This makes it

unlikely that telomerase-catalysed extension is due to the

presence of linear DNA.

Direct binding of Tetrahymena telomerase protein

component (TERT) to G-quadruplex DNA

To establish whether the extension of Kþ-stabilised G-quad-

ruplexes correlates with their ability to directly interact with

recombinant Tetrahymena telomerase, we conducted DNA-

telomerase binding assays. Biotinylated gel-purified inter-

and intramolecular G-quadruplexes formed from 24TT and

21GG, in parallel with their linear biotinylated counterparts,

were individually preincubated with in vitro reconstituted,
35S-labelled immunopurified Tetrahymena telomerase. The

G-quadruplex bound telomerase was then recovered using

Neutravidin coated beads and the amount of recovered

protein visualised on an SDS–PAGE gel.

The Biot-24TT and Biot-21GG intermolecular G-quadru-

plexes pulled down comparable levels of TERT protein to

their linear counterparts (Figure 8). Both G-quadruplexes

bind to TERT with higher Kd values than their linear forms,

reflecting the trend that is seen for the Km values (see above).

The intramolecular G-quadruplexes folded from the same

biotinylated sequences displayed negligible interaction with

TERT. The intramolecular Biot-21GG G-quadruplex appears

to bind to TERT to a greater extent than the Biot-24TT

G-quadruplex, but the former contains an intermolecular

G-quadruplex contaminant of up to 26% of the total DNA.

Jointly these data suggest that, while telomerase has

a strong binding affinity for Kþ-stabilised intermolecular

G-quadruplexes, it has very poor ability to bind to intra-

molecular G-quadruplexes stabilised by Kþ .

Discussion

Ciliate telomerase is able to extend intermolecular

parallel G-quadruplexes

The current consensus in the literature is that G-quadruplex

DNA is sequestered from telomerase, and thus cannot serve

Figure 7 Euplotes primer extension assays used to determine if G-quadruplexes can be extended by telomerase. Denatured control primers
(Ea23, Oxy 1.5 and Oxy 3.5) and G-quadruplexes from 25 nM–2mM were incubated in 50 mM KGlu (Oxy 1.5) or 50 mM Kþ or NaGlu (Oxy 3.5)
at 251C for 60 min in the presence of 1.4 ng of purified telomerase. LC¼ loading control.

Table IV Km values and relative Vmax ratios (folded/linear Ea23 control) for gel-purified Euplotes G-quadruplexes stabilised in 50 mM
monovalent cation and their linear counterparts

Primer Stabilising cation Conformation Km7s.d. (nM) Relative Vmax (folded/linear)

Ea23 K+ Linear/denatured 90720a 1.0070.06
Oxy 3.5 K+ Linear/denatured 100730 0.5670.07
Oxy 3.5 K+ Intramolecular 4607120 0.3070.03

Ea23 Na+ Linear/denatured 4073 1.0070.02
Oxy 3.5 Na+ Linear/denatured 47712 0.6570.03
Oxy 3.5 Na+ Intramolecular 2779 0.5670.03

Ea23 K+ Linear/denatured 110740 1.0070.14
Oxy 1.5 K+ Linear/denatured 4077 0.6770.03
Oxy 1.5 K+ Intermolecular 74716 0.5770.04

aKm’s of Ea23 and G-quadruplexes were determined simultaneously to account for inter-day variation.
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as its substrate. Here we have presented evidence that at least

a subclass of G-quadruplexes can be extended by telomerase.

We have demonstrated that intermolecular parallel G-quad-

ruplexes are robust substrates for both Tetrahymena and

Euplotes telomerase, to an extent exceeding that predicted

from their stability. Since at least partial resolution of the

G-quadruplex structure is presumably required for base-pair-

ing with the telomerase RNA template, we propose that

telomerase itself possesses G-quadruplex resolvase activity,

specific for this particular subclass of G-quadruplexes.

To discount the argument that intermolecular parallel

G-quadruplexes are unstable and spontaneously dissociate,

which could then facilitate their extension by telomerase,

we examined their stability by measuring thermal stability

and by using the WC complementary strand as a ‘trap’ for

dissociated DNA. The intermolecular G-quadruplexes were

exceptionally stable with Tm values 4771C. Furthermore,

in the trap assay, we found that 0–7% of the Tetrahymena

intermolecular G-quadruplexes hybridised over 60 min,

insufficient to account for the observed telomerase activity.

Intramolecular Kþ-stabilised G-quadruplexes were actually

faster-unfolding than their intermolecular counterparts, and

yet were barely extended by telomerase, providing additional

evidence that the amount of G-quadruplex unfolding occur-

ring over these time frames is insufficient for high levels of

telomerase extension. The intermolecular G-quadruplexes

were also highly resistant to digestion with a single-strand

specific nuclease or extension by TdT, indicating that there

is insufficient linear DNA present to account for their much

more robust extension by telomerase.

In addition, the Tetrahymena intermolecular parallel

G-quadruplex was able to directly interact with the protein

component (TERT) of recombinant Tetrahymena telomerase,

which further reinforces the competence of this higher-order

structure as a telomerase substrate. At present we cannot

discriminate whether it is the intermolecular or parallel

property of these G-quadruplexes that allows for binding

and extension by the enzyme. Further investigation is in

progress to address this issue. Presently, the solution struc-

tures for parallel intermolecular G-quadruplexes assembled

from 21GG, 24TT or 12GT Tetrahymena telomeric sequences

have not been solved; similarly, that of the Euplotes Oxy

1.5 parallel intermolecular G-quadruplex structure is

unknown. Crosslinking experiments support a four-stranded

structure for 12GT. The migration of the remaining G-quad-

ruplexes on native gels suggests that Oxy 1.5 is a tetramer,

while 21GG and 24TT are dimers. The latter quadruplexes

must have some kind of ‘propeller-like’ fold-out structure

(Parkinson et al, 2002) in order to be parallel-stranded.

However, at this stage, we also cannot rule out a four-

stranded configuration.

Since native Euplotes telomerase and recombinant

Tetrahymena telomerase are able to utilise intermolecular

parallel G-quadruplexes as substrates, we postulate that the

core telomerase complex, consisting of TERT protein and

telomerase RNA, possesses a G-quadruplex resolvase capa-

city. Although we cannot rule out contribution from conta-

minating protein(s) that may assist telomerase in dealing

with a structured primer, co-purification of such protein(s)

in two different systems is unlikely.

Figure 8 Primer pull-down assays of in vitro reconstituted immunopurified recombinant Tetrahymena telomerase using biotinylated
G-quadruplexes stabilised in 50 mM KGlu. Biot-PBR, a non-telomeric (NT) control oligonucleotide (800 nM), in the presence (NTþ ) or
absence (NT�) of KGlu.‘I’ represents input telomerase (25%). Gel-purified intra- and intermolecular Biot-24TT G-quadruplexes (B), or a linear
Biot-24TT control (A), were used in pull-down assays at the indicated concentrations, in the presence or absence of 50 mM KGlu, respectively.
Gel-purified intra- and intermolecular Biot-21GG G-quadruplexes (D), or a linear Biot-21GG control (C), were used in pull-down assays at the
indicated concentrations, in the presence or absence of 50 mM KGlu, respectively.
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Extension of intramolecular antiparallel G-quadruplexes

correlates with their stability

While an unpurified heterogeneous mixture of G-quadru-

plexes in either Naþ or Kþ was extended successfully by

ciliate telomerase (Figure 6; Supplementary Figure 3B), the

isolated antiparallel intramolecular G-quadruplex stabilised

in Kþ could no longer be extended. This finding was in

accord with previous observations made by Zahler et al

(1991) and is also consistent with a recent report by Zaug

et al (2005), which demonstrated that recombinant human

telomerase is unable to extend an intramolecular Kþ- stabi-

lised G-quadruplex.

On examining the stability of Kþ-stabilised, intramolecu-

lar, antiparallel G-quadruplexes, two distinct phases of

unfolding, a rapid phase and a slow phase, were observed,

as previously reported by Raghuraman and Cech (1990). This

implies that these G-quadruplexes contain two subpopula-

tions, one that is readily hybridisable with a complementary

strand with a half-life of o1 min and the second that is

responsible for the slow phase of dissociation, with a half-

life of several hours. Paradoxically, neither subpopulation is

extendable by telomerase nor interacts with the telomerase

protein component.

In contrast, Naþ -stabilised G-quadruplexes of similar anti-

parallel intramolecular configuration were readily extended

by telomerase. These quadruplexes, however, have very fast

dissociation rates and are most likely in rapid equilibrium

with their linear forms, which provides an explanation for

their ability to be extended by telomerase. This is consistent

with other reports in the literature, whereby lower melting

points and faster folding-unfolding kinetics have been obser-

ved for Naþ -stabilised G-quadruplexes compared to their

Kþ-stabilised counterparts (Raghuraman and Cech, 1990;

Hardin et al, 1991; Balagurumoorthy and Brahmachari,

1994; Risitano and Fox, 2003; Dominick and Jarstfer, 2004).

Therefore, the ability of ciliate telomerases to utilise

intramolecular antiparallel G-quadruplexes as substrates is

directly influenced by the relative stability of the G-quadru-

plex, which in turn is dictated by the identity of the stabilising

cation.

In vivo relevance

Although parallel intermolecular G-quadruplexes have not

been directly observed in ciliated protozoa in vivo, the

potential for their formation exists. Indeed, the majority

of 30 telomeric overhangs in T. thermophila are 14–15 or

20–21 nt long (Jacob et al, 2001) and thus unable to form

intramolecular G-quadruplexes. Similarly, the 30 overhang in

E. aediculatus is exactly 14 nt long (Klobutcher et al, 1981). In

both organisms the predominant G-quadruplex is thus likely

to be an antiparallel dimer G-quadruplex or a parallel

4-stranded structure. There is evidence for the in vivo exis-

tence of antiparallel dimeric G-quadruplexes in another cili-

ate, Stylonychia lemnae (Schaffitzel et al, 2001; Paeschke

et al, 2005), but this does not rule out the potential existence

of parallel quadruplexes in other organisms or at other stages

of the life cycle.

In vitro, [Naþ ]/[Kþ ] ratios affect the balance between

antiparallel and parallel G-quadruplexes, with Kþ favouring

parallel conformations (Sen and Gilbert, 1990; Miura et al,

1995). Ca2þ has also been reported to induce a transition

from antiparallel to parallel G-quadruplexes (Miyoshi et al,

2003). It is therefore conceivable that under different intra-

cellular ionic conditions in vivo, one or the other conforma-

tion may be favoured, which would then influence the ability

of telomerase to interact with the G-quadruplex. A switch

from antiparallel to parallel G-quadruplexes has also been

observed for the Tetrahymena and Oxytricha, but not human

telomeric G-quadruplexes under molecular crowding condi-

tions, which may more closely mimic the in vivo situation

(Miyoshi et al, 2004, 2005).

The formation of intermolecular G-quadruplexes involving

telomeres from adjacent chromosomes may facilitate telo-

mere–telomere interactions. This idea was first introduced

by Sen and Gilbert (1988), who suggested that parallel

strand association in telomeric and other G-rich sequences

could be involved in the alignment of four sister chromatids

during meiosis. The clustering of telomeres in a meiotic

bouquet arrangement has been observed in almost all organ-

isms, including ciliates (Harper et al, 2004; Loidl and

Scherthan, 2004). Furthermore, a component of the meiosis-

specific synaptonemal complex in S. cerevisiae, Hop1, was

demonstrated to promote pairing of double-stranded DNA

helices via G-quartet formation, implicating intermolecular

G-quadruplexes as the vehicles of chromosomal synapsis

during meiotic prophase (Anuradha and Muniyappa, 2004).

G-quadruplex mediated intermolecular assemblies could be

stabilised by proteins such as TGP1 (Tetrahymena G-DNA

binding protein 1) that has been demonstrated to directly

bind intermolecular G-quadruplex structures formed from the

(T2G4)4 Tetrahymena telomeric sequence (Lu et al, 1998).

The resolvase capacity of telomerase could then allow for

the unwinding of such interchromosomal associations and

subsequent telomeric DNA synthesis.

Materials and methods

Oligonucleotide preparation
DNA oligonucleotides (Table I) were purchased from Sigma
Genosys (Tetrahymena) or Integrated DNA Technologies (Euplotes)
in desalted form. All oligonucleotides with the exception of 12GT
were purified by electrophoresis on denaturing 20% polyacryl-
amide/8 M urea gels in 1� TBE buffer (89 mM Tris, 89 mM Borate,
2 mM EDTA) and the major band was excised, eluted by crushing
and soaking in TEN (10 mM Tris–HCl pH 7.5–8.0, 1 mM EDTA,
100–250 mM NaCl) and ethanol precipitated. In some experiments,
the oligonucleotides were 50 end-labelled with [g-32P]ATP (see
Supplementary data). Purified labelled and unlabelled Tetrahymena
oligonucleotides were dialysed for 12–16 h at 41C against Milli Q
water to further desalt them.

The RNA oligonucleotides EaTR and 30AA (Table I) were purcha-
sed from Dharmacon (Lafayette, CO), stored in their protected
forms, and deprotected following the protocol described by the
manufacturer.

G-quadruplex formation, electrophoresis and purification

Tetrahymena oligonucleotides. Oligonucleotides of Tetrahymena
telomeric sequence spiked with 5000–10 000 c.p.m. of radiolabelled
oligonucleotide of the same sequence were heat denatured in 1�
Tetrahymena Telomerase buffer (50 mM Tris–HCl pH 8.3, 1.25 mM
MgCl2, 5 mM dithiothreitol (DTT)) and either 50 mM sodium
glutamate (NaGlu) or 50 or 150 mM potassium glutamate (KGlu)
at 951C for 5–10 min, then allowed to equilibrate at 231C for 30 min.
The folded DNA was added to 6� native gel loading buffer (0.25%
bromophenol blue, 0.25% xylene cyanol and 30% glycerol) and
electrophoresed on a nondenaturing 12% polyacrylamide gel for
3.5–5 h at 10 W at 231C. Both buffer and gel contained the same
constituents as those in which the DNA was folded with the
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exception of DTT. The gel was dried for 60 min at 801C and exposed
to a PhosphorImager screen (Molecular Dynamics) for 12–16 h.

To gel purify particular G-quadruplex conformations from 21GG,
24GG and 24TT, DNA was folded as described above in either 0.1 ml
of relevant salt buffer at 100 mM final concentration or 1 ml of buffer
at 2–4 mM concentration for inter- and intramolecular conforma-
tions, respectively. To isolate an intermolecular form of 12GT, 1 mM
DNA was heat denatured as above and incubated at 25–371C for 2–3
days in the presence of 1� Telomerase buffer and 100 mM NaCl.
The folded DNA was electrophoresed on a native gel as described
above. The gel was exposed to BioMax Kodak film for 1 h to
determine the location of the radiolabelled oligonucleotide.
Comigration of this band with the bulk of the unlabelled DNA
was confirmed by UV shadowing. The band of interest was excised
and crushed in 250 mM KGlu/NaGlu or NaCl, 10 mM Tris–HCl pH
8.3, 1 mM EDTA and incubated for 12–16 h at 231C with rotation.
The supernatant was filtered with a 0.22mm filter and the DNA
precipitated with two volumes of absolute ethanol for 4–16 h at
�201C. The precipitated product was resuspended in the original
folding buffer. DNA concentrations were determined by UV
absorbance at 260 nm (see Supplementary Table I for extinction
coefficients). An aliquot of the gel purified G-quadruplex was
electrophoresed on a second native gel in the presence of the
relevant salt to determine its purity using ImageQuant software.
The remainder of the gel purified G-quadruplex was stored at 41C
in its folding buffer.

Euplotes oligonucleotides. 200mM Oxy 1.5 and 1mM Oxy 3.5 in 1�
Euplotes folding buffer (20 mM TrisOAc pH 7.5, 10 mM MgCl2, 1 mM
DTT, and 50 mM Kþ or NaGlu) were heated to 951C for 5 min and
allowed to slowly cool (B21C/min) to 251C. Folded DNA was
electrophoresed on 20% nondenaturing gels (50 mM Kþ or NaOAc)
for 3.5 h at 100 V at 41C using a running buffer of 50 mM Kþ

or NaOAc in 1�TBE. DNA was visualised by phosphorimaging
(32P-labelled DNA) or UV shadowing (unlabelled DNA), isolated
by a crush and soak method into 1� TEK (10 mM Tris–HCl pH
8.0, 1 mM EDTA, 100 mM KCl) or TEN buffer, and concentrated by
ethanol precipitation. Samples were resuspended in the correspond-
ing 1� Euplotes reaction buffers, and quantified by scintillation
counting (labelled DNA) or UV absorbance at 260 nm (unlabelled
DNA; see Supplementary Table I for extinction coefficients). The
integrity of the recovered structures was confirmed by native gel
electrophoresis. Radiolabelled structures were used for solution
hybridisation studies, whereas unlabelled G-quadruplexes were
used for telomerase assays and CD analysis.

Biotinylated primer pull-down assays (binding studies)
Binding studies were conducted by immobilising biotinylated
Tetrahymena G-quadruplex DNA on NeutrAvidin beads (Pierce

Biotechnology) in the presence of radiolabelled recombinant
Tetrahymena telomerase. Nonradioactive biotinylated oligonucleo-
tides 24TT and 21GG were folded and gel purified as described
above. Each biotin-conjugated G-quadruplex (10 ml) or its linear
counterpart was incubated with 10ml of 35S-labelled recombinant
telomerase in 1� Tetrahymena Telomerase buffer (see above) with
or without 50 mM KGlu at 251C for 10 min. NeutrAvidin beads (10 ml
per reaction) were washed four times with 1� Telomerase buffer
with 10% glycerol. The beads were blocked twice for 15 min at 41C
in the same buffer with the addition of 0.75 mg/ml BSA, 0.15 mg/ml
glycogen and 0.15 mg/ml yeast RNA. NeutrAvidin beads that were
to be used for G-quadruplex samples included 50 mM KGlu in the
wash and blocking steps to preserve the folded conformation.
Blocked beads were resuspended in one volume of blocking buffer.
Blocked bead slurry (20ml) was added to the DNA-telomerase
reaction mix and the samples were rotated at 41C for 15 min. The
beads were washed four times with 1� Telomerase buffer with
10% glycerol and 300 mM LiOAC for linear DNA or 300 mM KGlu for
G-quadruplex DNA. The beads were resuspended in one volume of
the corresponding salt buffer. Half of each reaction was added to an
equal volume of 2� Laemmli’s loading buffer (125 mM Tris–HCl
pH 6.8, 4% SDS, 0.005% bromophenol blue, 20% glycerol and
0.72 M b-mercaptoethanol) plus 300 mM KGlu, denatured at 951C
for 3 min, loaded onto a 4–20% SDS–PAGE gel (Novex) and
electrophoresed for 1.5 h at 120 V. The gel was fixed in 25%
isopropanol and 10% acetic acid for 20 min, dried at 801C for 1 h
then exposed to a PhosphorImager screen for 12–16 h.

Circular dichroism, stability studies, preparation of
telomerase and activity assays
DNA structural analysis by CD, complementary strand trap assays,
the preparation of recombinant and native Tetrahymena and
Euplotes telomerase, telomerase activity assays and treatment with
SVP1 and TdTwere carried out using published procedures. Further
details are given in the Supplementary data online.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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